
Presented by

Date

Event

Debugging ARM kernels
using NMI/FIQ

HKG15-302Daniel Thompson
STMicroelectronics

Feb 2015

Linaro Connect HKG15

Look at NMI on x86 and FIQ on ARM
Review the use of NMI for kernel debugging
Discuss some practical issues

TrustZone, ARMv8, status, kernel config

Demo!

(And a free bonus extra if there’s time)

What this talk will cover

On x86 NMI has a long heritage as a debug tool
Early PCs used it to report hardware faults such as memory parity errors
Modern servers may have a physical NMI button on the front panel
Watchdogs can be routed to NMI rather than reset
Performance counters are hooked directly to local APIC

APIC allows flexible routing to/from NMI
Hard to exploit on PCs due to unpredictable interrupt sharing

NMI in x86

Fast Interrupt reQuest
A thirty year old trick to avoid putting a DMA chip into the Archimedes
Separate mask bit in PSR
Five extra banked registers allow stackless software DMA handlers

floppydma.S, ssi-fiq.S, spi-s3c24xx-fiq.S, ams-
delta-fiq-handler.S

socfpga devs. often want to exploit this with custom coded handlers

FIQ isn’t non-maskable but in practice is never-masked
(which has the same acronym)

FIQ on ARM

ARM core

PSR I F

FIQ on ARM

GIC

Mask

Priority filter Priority filter

ARM core

PSR I F

Registers on ARM
r0
r1
r2
r3
r4
r5
r6
r7
r8 r8_fiq
r9 r9_fiq
r10 r10_fiq
r11 f11_fiq
r12 r12_fiq
r13 (sp) r13_fiq r13_irq r13_abt r13_und r13_svc
r14 (lr) r14_fiq r14_irq r14_abt r14_und r14_svc
r15 (pc)

FIQ in Linux

Historically used to implement software DMA
Supported by very simple API

enable/disable
reserve/release
populate-banked-registers-on-calling-cpu
please-memcpy-my-handler-into-vector-table

The new default FIQ handler for ARM

Saves register state, switches to SVC mode
(for supervisor stack) and runs a C function

Intended to be the primary handler for NMI-like
use cases (too heavyweight for s/ware DMA)

Almost too easy...

Locks are (almost) always unsafe from NMI

So...
Everything you do must be lockless
Printing to console is unsafe
Waking up threads is unsafe
Queuing tasklets is unsafe

...

Gotchas

Locks are (almost) always unsafe from NMI

So...
Everything you do must be lockless
Printing to console is unsafe
Waking up threads is unsafe
Queuing tasklets is unsafe

Top tip: irq_queue_work() can be used to defer work

Gotchas

Gremlins
.macro restore_user_regs, fast = 0, offset = 0
ldr r1, [sp, #\offset + S_PSR] @ get calling cpsr
ldr lr, [sp, #\offset + S_PC]! @ get pc
msr spsr_cxsf, r1 @ save in spsr_svc
.if \fast
ldmdb sp, {r1 - lr}^ @ get calling r1 - lr
.else
ldmdb sp, {r0 - lr}^ @ get calling r0 - lr
.endif
mov r0, r0 @ ARMv5T and earlier require a nop here
add sp, sp, #S_FRAME_SIZE - S_PC
movs pc, lr @ return & move spsr_svc into cpsr
.endm

Gremlins everywhere
static void imx_poll_putchar(struct uart_port *port,
 unsigned char c)
{

unsigned int status;
do {

status = readl(port->membase + USR1);
} while (~status & USR1_TRDY);
writel(c, port->membase + URTX0);
do {

status = readl(port->membase + USR2);
} while (~status & USR2_TXDC);

}

Applications
What does it do for me?

Use an IPI to get all processors in the system
to call show_regs()

trigger_all[butself]_cpu_backtrace()

Called when:
Spinlocks take a long to acquire (DEBUG_SPINLOCK)
Soft lockup detected (softlock_all_cpu_backtrace)
Before a panic due to hung_task_panic
SysRq-L (note that SysRq may require IRQs)

All cpu backtrace

Reflections on watchdog h/ware design

Watchdogs don’t have to be wired directly to
the reset pin

Routing to FIQ allows us to trigger_all_cpu_backtrace()
before issuing a soft reboot
Ideally have a secondary watchdog that can perform
reset (the watchdog built into the C-A9 MPCore could
be coerced into doing this)

Modifying the PMU to use FIQ means we get a
more accurate kernel profile

We can instrument every part of the kernel except the
FIQ handler and the big.LITTLE switcher
spin_unlock_irqrestore() is no longer hot in the profiler

Note:
Using FIQ has no impact on userspace profiling since IRQs
are always enabled in userspace anyway

Performance monitoring

Soft lockup detector is a periodic hrtimer that checks that a
high priority task gets some CPU time

Hard lockup detector (a.k.a. the NMI watchdog) uses a
periodic NMI to check that the soft lockup detector is still
running

Runs on every core in the system (which is why hard lockup never called
trigger_all_cpu_backtrace)
Uses PMU cycle counter as source of periodic interrupt

Hard lockup detector

Linux x86 allows an NMI button to trigger k(g)db
Uses the existing polled I/O mechanism to communicate (UART, PS2
keyboard+VGA, …)

We could do better on ARM? After all the interrupt
architecture usually allows us to steer the UART to FIQ

➔ Send a keystroke to the UART
➔ Debugger triggers stops whenever a byte is pending on the UART
➔ Debugger uses polled I/O to grab the character

kgdb and kdb

Linaro’s work with FIQ was inspired by Android
FIQ debugger

A UART-based interactive debugger (similar to kdb) that
can, optionally, use FIQ to process characters received
from the serial port.

UART is multiplexed via the headphone jack
Line noise? That could be bad...

An aside: Android FIQ debugger

If a UART were treated like the NMI button on a
server then line noise halts the system… ouch!

ttyNMI is a console driver that wraps the UART
Waits for a pattern before halting the system: $3#33
Provides tty services to allow console and getty to share
UART with kernel debuggers

kgdb and kdb

Practicalities
How do I run this stuff?

ARM core

PSR I F

ARMv7 without TrustZone

GIC

Mask

Priority filter Priority filter

ARM core

PSR I F

PSR I F

Normal
world

TZ
OS

ARMv7 with Trustzone

GIC

Mask

Priority filter Priority filter

PSR I F

Normal world TZ
OS

FIQ triggers a
switch into the
secure monitor
and can not be
observed by
Linux (and any
other normal
world OS)

Secure monitor can
disable the interrupt
and alter normal
world state (e.g.
context switch)
although this is too
slow for some
applications.

Access to secure mode

To exploit FIQ you need to be able to run Linux
in secure mode

Secure bootloaders are unlikely to be your friend
Some “non-secure” parts have a mask programmed
ROM that jumps to non-secure mode before boot

… or a TZ monitor that shares FIQ with normal world OS
 and a lot of spare hacking time

PSR I F

Normal
world

TZ
OS

ARMv7 with TrustZone

GIC

Mask

Priority filter Priority filter

PSR I F

Normal world TZ
OS

PSR I F

Normal
world

TZ
OS

ARMv8/GICv3+ with TrustZone

GIC

Mask

Priority filter Priority filter

PSR I F

Normal world TZ
OS

ARMv8 provides a
co-processor
interface for the
GIC, making
access from the
CPU very fast.
Fast access to the
priority filter
makes it possible
to simulate NMI
without using FIQ.

No known bugs but...

All cpu backtrace (partially upstream)
Performance monitoring (RFC)
Hard lockup detector (git only)
kgdb and kdb (git only)
ARM64 (proof-of-concept in-progress)
git clone https://git.linaro.org/people/daniel.thompson/linux.git -b merge/fiq

https://git.linaro.org/people/daniel.thompson/linux.git

The NMI FIQ handler is installed by default so many
features just work better out-of-the-box if they detect they
are running on a system that support NMI/FIQ

CONFIG_SPINLOCK_DEBUGGING
CONFIG_LOCKUP_DETECTOR
CONFIG_PMU

HOWTO - It just works

HOWTO - kgdb and kdb

Serial driver
May need porting and making NMI-safe (ttyAMA,
ttyASC and ttymxc are already ported)

Kernel configuration
KGDB, KGDB_KDB, KGDB_FIQ, SERIAL_KGDB_NMI

Kernel cmdline
console=ttyNMI0 kgdboc=ttyAMA0,115200

Does it really work?

Demo

Another idea from Android:
UART is multiplexed via the headphone jack?
What stops an “evil” set of airline headphones stealing
your data?

kdb restricted capabilities mode
Work like SysRq restrictions
Allows debug features to be limited to passive
inspection of state

Bonus extra -
Keeping kdb turned on in production

